Two-Domain DNA
Strand Displacement

Luca Cardelli
Microsoft Research

Tokyo, 2010-06-19
http://lucacardelli.name



Nanoscale Engineering
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» Sensing
o Reacting to forces
o Binding to molecules

Actuating

o Releasing molecules
o Producing forces

Constructing

o Chassis
o Growth

Computing
o Signal Processing
o Decision Making

Nucleic Acids can do all this.

And interface to biology.
And are programmable.
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Strand Displacement
Basics



DNA

GC Base Pair

Guanine-Cytosine

TA Base Pair
Thymine-Adenine

(http:/ /www.biosciences.bham.ac.uk/labs/minchin/tutorials/dna.html)

Sequence of Base Pairs (GACT alphabet)



Hybridization
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« Strands with opposite orientation and complementary
base pairs stick to each other (Watson-Crick duality).

« This is all we are going to use

o We are not going to exploit DNA replication, transcription, translation,
restriction and ligation enzymes, etc., which enable other classes of tricks.
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Domains

Subsequences on a DNA strand are called domains.
PROVIDED they are “independent” of each other.

CTTGAGAATCGGATATTTCGGATCG CGATTAAATCﬁETG

l.e., differently named domains must not hybridize:

With each other

With each other’s complement

With subsequences of each other

With concatenations of other domains (or their complements)
Etc.

How to choose domains (subsequences) that are suitably
independent is a tricky issue that is still somewhat of an open
problem (with a vast literature). But it can work in practice.
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Short Domains
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Long Domains
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Strand Displacement

“Toehold Mediated”



Strand Displacement
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Toehold Binding



Strand Displacement

Branch Migration



Strand Displacement
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Strand Displacement

Irreversible



Bad Match
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Bad Match



Bad Match



Bad Match

Cannot proceed
Hence will undo



Toehold Exchange



Toehold Exchange



Toehold Exchange



Toehold Exchange



Toehold Exchange

Reversible



Cooperative Displacement



Cooperative Displacement



Cooperative Displacement

Single input
will reverse



Cooperative Displacement



Cooperative Displacement

Double input
is irreversible



Summary (1)
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Summary (2)
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Signals & Gates



Four-Domain Signals
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DNA as a universal substrate for chemical kinetics
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Three-Domain Signals
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Strand Algebras for DNA Computing

LLuca Cardelli

DNA Computing and Molecular Programming.
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Two-Domain Signals
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Two-Domain DNA Strand Displacement

Luca Cardelli

In S. B. Cooper, E. Kashefi, P. Panangaden (Eds.):
Developments in Computational Models (DCM 2010).
EPTCS 25, 2010, pp. 33-47. May 2010.
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- Top-Nicked Double Strands
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Signals have a simple structure: just two domains.

_I

Gates have a simple structure:
‘top-nicked’ double-stranded DNA with no ‘frills’.
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A top-nicked double-strand is ‘equivalent’
to a double strand with open toeholds.
These situations shall not be distinguished.



Transducer x—y




Transducer x—y

Input
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tais a private signal (a different ‘a’ for each xy pair)



Transducer x—y
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Transducer x—y
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Transducer x—y
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Transducer x—y
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So far, a tx signal has produced an at cosignal.
But we want signals as output, not cosignals.



Transducer x—y
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Transducer x—y
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Transducer x—y
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Transducer x—y
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Here is our output ty signal.

But we are not done yet:

1) We need to make the output irreversible.
2) We need to remove the garbage.

We can use (2) to achieve (1).



Transducer x—y




Transducer x—y




Transducer x—y




Transducer x—y




Transducer x—y

Output

t Y

Done.

Note the tata motif and how it helps in collection.



The Transducer in DSD

directive sample 50.0
directive plot <tA x>; <tA y> e -
directive scale 1.0
new t@1.0,1.0

def Tr(N, x, y) =
new a

(N* <tA a>
| N* <y tA>
| N* tA:[x tA]:[a tAl:[a

| N* [x]:[tA y]:[tA a]:tA t a
) —
(Tr(10, x, y) y t

| 1% <tA x> o

) t X



Transducer Reactions




~ Transducer Reaction Graph
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Transducer Variation

Single backbone, using cooperative displacement to remove garbage.
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Note: garbage collection by cooperative displacement is optional
for the transducer, but becomes essential later.
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Fork x—y+2z
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(Amplifier: x—=x+x)



Catalyst x+y—y+z
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(Autocatalyst: x+y—y+y)



Autocatalytic O

X+y—y+y
V+z—z+Z
Z+X—>X+X

scillator

Ll

directive sample 100.0 1000
directive plot <tA x>; <tA y>;
<tA z>

(* directive scale 100.0 *)

new t@1.0,100.0

def C(N, x, vy, z) =

new a

(N* <tA a>

| N* <z tA>

| N* [tA]:[x tA]:[y tA]:[a tA]:[a]
| N* [X]:[tA z]:[tA y]:[tA a):[tA]
)

(

C(100, x,y,vy)
| C(100,vy, z, 2)
| C(100, z, x, x)
| 10 * <tA x>
[ 1% <tAy>
| 1% <tA z>

)



Join Xx+y—z

Input
———
y b t
Input
— ———

X t a

> >, >, > >, >,
X y t a t a X t b t

<
—
t b y t




Join Xx+y—z
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Join Xx+y—z
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Join Xx+y—z




Join X+y—z
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We cannot have a collector just waiting for yt,
because there may be innocent yt elsewhere in
the system, like here!

— ———
t a y ot
>~ ~ ~ S S ~
S t a t  a x t y t a t
< <

Transducer x—y

Instead, the collection of yt
must be triggered only by a
signal signifying that an x+y—z
gate has fired. That signal is tb,
which will trigger the collection
of yt after output tz is produced.

bt is a private signal
(a different ‘b’ for each xyz triple)



Join Xx+y—z




Join Xx+y—z
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Join Xx+y—z
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Join Xx+y—z
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Join Xx+y—z
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Join Xx+y—z
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Join Xx+y—z
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Join Xx+y—z
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General nxm Join-Fork

Easily generalized to 3+ inputs (with 2+ collectors) etc.
Easily generalized to 2+ outputs (like Fork) etc.
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Figure 9: 3-Join J,,,. | tw | tx | ty — tz: initial state plus inputs tw, 7x, ty.

_I

A



Petri Net Transitions

Computing power equivalent to Petri Nets (not Turing
complete).

Not completely trivial: gates are consumed by activation,
hence a persistent Petri net transition requires a stable
population of gates.

Join

Fork




Strand Algebra

An abstract description of signal-gate interactions:

X1 | oo I X0 | XX LYVl = Y o T Y

Strand Algebra is an ‘intermediate language’

o Four-three-two domain gates implement Strand Algebra.

o Strand Algebra implements Boolean circuits, Petri Nets, FSA, Linear I/O Systems,
Interacting Automata, etc.

Two-domain gates implement Strand Algebra
o N.B. this is a conjecture.
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A+B->B+C

Input Strands Gate Complexes
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Georg Seelig, Matt Olson




Enzymatic gate production

Make dsDNA from plasmids or using PCR, then digest with
Restriction enzymes and nicking enzymes

| | |

I |
5" -NNCACGTCNNNNNNNNGAGYCATTGONNNNNNNNNNNGAGTLCATTGCNNNNNNNNNNNGAGTICATTGCINNNNN
3" —-NNGTGCAGNNNNNNNNCTCHGTAACGNNNNNNNNNNNCTGTIEGTAACGNNNNNNNNNNNCTCAIGTAACGNNNNN

Digest with nicking enzyme Nt.BstNB:

5" -NNCACGTCNNNNNNNNGAGT CATTGCNNNNNNNNNNNGAGT CATTGCNNNNNNNNNNNGAGT CATTGCNNNNN
3" —-NNGTGCAGNNNNNNNNCTCA-GTAACGNNNNNNNNNNNCTGT-GTAACGNNNNNNNNNNNCTCA-GTAACGNNNNN

Georg Seelig, Yuan-dyue Chen




Nicking Enzyme Digest
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Structural Invariants



Double Strand Invariant

« Using top-nicked double strands on/y

o The absence of any branching is inherently more trouble-free than branching
structures that can tangle and interact in unexpected ways through their
protruding single-stranded parts.

o All double-stranded structures are quiescent (except for receptive toeholds on
the bottom strand), eliminating the possibility that the gate themselves may
polymerize, or may self-interact.

o Gates can be produced by any available means of generating double-stranded
DNA (e.g. biologically). Top-nicks can be added by restriction enzymes.

o These structures have a simple syntactical representation and simple reduction
rules, which simplify formal verification.

e A structural invariant

o No double-stranded structure other than top-nicked double strands should exist
through computation. (Except fleetingly during branch migration.)

o This imposes restrictions on the allowable single strands.



Single Strand Restrictions

Sequences of long domains < v

o Are inert (because all double strands are fully complemented)
and can be ignored/forbidden.

~

(Sub-)sequences of the form: ~—« «
>, >,
o Can react with L violating the invariant. Forbidden.

(Sub-)sequences of the form: ——

o Canreactwith =%~ : % . Vviolating the invariant. Forbidden.

<

(Sub-)sequences of the for@: T~
o Bind irreversible, hence t t t v jsasbadas x t v .Forbidden.

~

(Sub-)sequences of the form: =~ = —~ v =«
o Can react with‘t x y t violating the invariant. Forbidden.




Single Strand Invariant

L

-

e Hence we are left with: > = C %
o The two-domain signals!

 That is, the top—-nicked DNA restriction
forces the two-domain signal structure.

« Now, another structural invariant:

o No single-stranded structures other than xt, tx should exist through
computation. (Except for sequences of long strands, and single short strands.)

o This imposes new restrictions on the allowable double strands.



Double Strand Restrictions

L

-

* Nicks must break the top strand into segments of two
domains or less.

o Otherwise, T T v SPu—
<
=

releases the forbidden X oty

« Hence, we are left with:

o Double strands that are the bottom-strand concatenations of the double-
stranded elements made of at most two domains:

—_— > > > >
t X t X X t X y
< < < <
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Correctness

Correctness issues

Some domains are supposed to be ‘private’ to some gates
Active residuals must be converted to proper waste
Interferences between copies of the same gate are possible
Interferences between copies of different gates are possible

0O O O O

How to check correctnhess?
o Other than by simulation?

The spec of a transducer: T, +tx — ty

Is that true at all?

Is that true possibly or necessarily?
Is that true /n all possible contexts?
How do we check these properties?

O O O O
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Nick Algebra

X x.t i x.x : DID

: UlU : (vx)U

single strand
double strand
soup



Algebraic Equality

= is an equivalence relation,
and a congruence over the term syntax

U]|(U2|U3) — (U]|U2)|U3
U1|U2 » U2|U1
g|lU = Ulg = U

(v)U = (vy)(U{y/x}) it ye pa(U)
(vx)o = o
(vx)(U;|U,) = U;[(vx)U, if xe palU,)

(v)(vy)U = (vy)(vx)U



Reduction

D, ittxttD, | tx <« D,'tx't'D, | xt exchange
D,itTxTD, | tx — D,txtD, left coverage
D,iIxt'D, | xt —» D,xttD, right coverage
D, ittxy™t™D, | tx | yt —» D,Ttxtyt'D, cooperation

D - o if D not reactive waste
u, - U, = U, |U-> U, |U dilution
U, - U, = U, - XU, isolation

U] - Uz, U2 — U3, U3 — U4 — U] — U4 miXing



| Reachability

. U, ->*U, iff U, —-..->U,

o Thatis, U; mayreduce to U,.

« U, ->vU, iff VU, U, ->*U=U->*U..

o Thatis, U, wi//reduce to U,. (It cannot avoid the possibility of reducing to U,).



Correctness

L

-

* Proposition: Gate may-Correctness
Tn,ltx" —=* tyn
Fyz [ TXN =% tyn|tz"

Iy | XNty —* 2z
o Easy induction.

» Proposition: T',, Will-Correctness

Ty [ tx =7 ty

Exhaustive case analysis enumerating all states of the system.

Can be done by hand for T1,,, and maybe szy, but not really for T3Xy etc.
Will-correctness for fork/join is harder.

Will-correctness for combinations of gates is harder.

We are using modelchecking to verify some of these properties.
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Conclusions

« A new architecture for general DNA gates

o Simple signals, simple gate structures.

o Self-cleaning: no garbage left by operation (except inert).
o Enabling new ways of assembling gates.

o Some experimental evidence that it works.

« A correspondingly simple algebra

o For verifying gate designs mechanically.
o For studying expressiveness (does it really implement Petri nets?).



